If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+2x-3200=0
a = 1; b = 2; c = -3200;
Δ = b2-4ac
Δ = 22-4·1·(-3200)
Δ = 12804
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12804}=\sqrt{4*3201}=\sqrt{4}*\sqrt{3201}=2\sqrt{3201}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{3201}}{2*1}=\frac{-2-2\sqrt{3201}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{3201}}{2*1}=\frac{-2+2\sqrt{3201}}{2} $
| 2=-6+8a-7a | | 6(x-5)+3x=-48 | | 10+3/x=7 | | 11x^2-12x+5=0 | | 41+4y+y+34=180 | | 92+52+6x=180 | | 46+3a+a-2=180 | | 100+44+6w=180 | | 33+5p+2p=180 | | 33+5p+2p=190 | | 16s+39+109=180 | | 9x-58+9x-68=90 | | 9x-68+9x-58=90 | | -2x(-14-3x)=9 | | 5x-1/4=3x-x | | x=x2+5x-24=0 | | 12.5+16x=20x+4.5 | | 25(x+5)=20(1.5x+1) | | 25x(x+5)=20(1.5x+1) | | 6x+9+5x-16=180 | | 2x=-18+2 | | 18x-x=-4 | | 16w=9w+63 | | 2x-3=7x-37 | | -4(5x-8)=-45 | | 20.3=-2.9x | | 4/6m=-3/8 | | -16=7(w+8)+5w | | 5(-2)+4y=-14 | | 4(v-3)+7v=10 | | -9=5x+6(x+4) | | 8-6r=-22 |